Archive for September 8th, 2023

Freitag, September 8th, 2023

Microsoft Power BI – an example that demonstrates a Kalman filter in action requires several steps and a bit of context

Freitag, September 8th, 2023

Kalman filter – is a mathematical algorithm used for various purposes such as state estimation and sensor fusion. In Power BI you can use DAX (Data Analysis Expressions) to perform calculations but creating a full Kalman filter implementation would be complex and beyond the scope of a simple example. However you  can provide you with a simplified example of how you might use Power BI to visualize data that has been pre-processed with a Kalman filter

Let’s assume you have a dataset with noisy sensor readings and you want to apply a Kalman filter to smooth out the data before visualizing it in Power BI

Here’s a step-by-step example

Step 1: Data Preparation

Assume you have a dataset in Excel with two columns: „Timestamp“ and „NoisyData“

Step 2: Kalman Filtering

You’ll need to use a programming language like Python or a specialized tool for Kalman filtering to process your data and apply the Kalman filter. Here’s a simplified Python example using the pykalman library

import numpy as np
from pykalman import KalmanFilter
# Load your dataset (e.g., using Pandas)
# Apply Kalman filter to your noisy data
kf = KalmanFilter(initial_state_mean=0, n_dim_obs=1)
filtered_state_means, _ = kf.filter(your_noisy_data)
# Save the filtered data back to a file or database

Step 3: Import Filtered Data into Power BI

After applying the Kalman filter save the filtered data to a new Excel file then import this filtered data into Power BI as a data source

Step 4: Create Power BI Report

Open Power BI and create a new report
Connect to your filtered data source
Create visualizations such as line charts to visualize the filtered data
Here’s a simplified example of what your Power BI report might look like:

Create a line chart with „Timestamp“ on the x-axis and „FilteredData“ (the output of your Kalman filter) on the y-axis

Step 5: Publish and Share

Once you’ve created your Power BI report you can publish it to the Power BI service and share it with others

This example demonstrates how to integrate a Kalman filter into a data preprocessing pipeline and visualize the filtered data in Power BI the actual Kalman filter implementation will require a programming language like Python or a specialized tool

Balkonkraftwerk – der VDE zertifiziert ab sofort Solaranlagen mit Stecker

Freitag, September 8th, 2023

Werdau Pleißental-Klinik GmbH – Sachsens Sozialministerin Petra Köpping (SPD) kommt mit € 11 Millionen ins Krankenhaus

Freitag, September 8th, 2023

Kalman Filter – implemented in a Jupyter Notebook using Python

Freitag, September 8th, 2023

This example assumes a simple 1D position estimation problem

import numpy as np
import matplotlib.pyplot as plt
# Define the true state dynamics (for simulation purposes)
dt = 1.0 # Time step
A = np.array([[1, dt], [0, 1]]) # State transition matrix
B = np.array([[0.5 * dt**2], [dt]]) # Control input matrix
H = np.array([[1, 0]]) # Measurement matrix
# True initial state
x_true = np.array([[0], [0]])
# True state noise covariance (for simulation purposes)
Q = np.array([[0.01, 0.02], [0.02, 0.1]])
# Measurement noise covariance (for simulation purposes)
R = np.array([[1]])
# Number of time steps
num_steps = 100
# Generate noisy measurements
true_states = []
measurements = []
for _ in range(num_steps):
# Simulate the true state dynamics
x_true = np.dot(A, x_true) + np.dot(B, np.array([[np.random.normal(0, Q[0, 0])]]))
# Simulate noisy measurements
z = np.dot(H, x_true) + np.array([[np.random.normal(0, R[0, 0])]])
true_states.append(x_true[0, 0])
measurements.append(z[0, 0])
# Kalman Filter Initialization
x_hat = np.array([[0], [0]]) # Initial state estimate
P = np.array([[1, 0], [0, 1]]) # Initial state estimate covariance
# Kalman Filter Estimation Loop
state_estimates = []
for z in measurements:
# Prediction Step
x_hat = np.dot(A, x_hat)
P = np.dot(np.dot(A, P), A.T) + Q
# Measurement Update Step
K = np.dot(np.dot(P, H.T), np.linalg.inv(np.dot(np.dot(H, P), H.T) + R))
x_hat = x_hat + np.dot(K, z – np.dot(H, x_hat))
P = P – np.dot(np.dot(K, H), P)
state_estimates.append(x_hat[0, 0])
# Plotting
plt.figure(figsize=(12, 6))
plt.plot(true_states, label=’True States‘, linestyle=‘–‚)
plt.plot(measurements, label=’Measurements‘, marker=’o‘, linestyle=’None‘, markersize=5)
plt.plot(state_estimates, label=’Estimated States‘)
plt.xlabel(‚Time Steps‘)
plt.ylabel(‚Position‘)
plt.legend()
plt.title(‚Kalman Filter 1D Position Estimation‘)
plt.grid(True)
plt.show()

CSU Parteivorsitzender Dr. Markus Söder – Pressekonferenz nach der Klausur der CSU Landtagskandidaten und Direktkandidaten vom 08.09.2023

Freitag, September 8th, 2023

Freitag, September 8th, 2023

Freitag, September 8th, 2023

Kalman Filter – develop a model for typical vehicle localization sensors including GPS and IMUs

Freitag, September 8th, 2023

Freitag, September 8th, 2023